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Background Datasets

More than processing: there is suggestive evidence that comprehenders Two experiments on the Relative Clause Design of Fine et al. (2013)
implicitly learn during comprehension [1,2], sometimes within the course of a (RC)/Main Verb (MV) ambiguity | |
single experiment [3] > Fine et al. (2013) E
- Harrington Stack et al. (2018) | |
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However, explicit computational models of adaptation have been lacking (but see
[4]) Both used between-subjects designs

with more or less exposure to RCs
Our contributions: (1) Develop & test a Bayesian belief-updating model that - Harrington-Stack et al. doubled

captures the theoretical predictions of expectation adaptation; (2) infer number of items in each block
comprehender’s probabilistic beliefs
- prior beliefs inferred match production statistics
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Simple Beta-Binomial Belief Updating Model
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Results

{ trials
\\ J Surprisal and surprisal x ambiguity both contribute over and above
Residualization Model control factors for a wide range of prior beliefs
Best-fitting priors close to what we would expect from production

10g(RTxerc) ~ s(Trial) + s(Word Length) + (s(Word Length) + probabilities [6]
T T s(Trial) | Subject) Fine et al. (2013) Harrington Stack et al. (2018)

fit to only filler non-linear smooth
trials to avoid  over trial controls for - BIC(model) -
overfitting theoretically irrelevant J BIC(control)

task adaptation =",

L
EEE

Conclusions & Future Work RN

Surprisal from beta-binomial model fits the data fairly well
- But many of the other factors still matter, namely main effects of
trial, structure, group, etc

10 100
Inferred prior strength relatively low Nmv

- suggests listeners come into an experiment with looser prior

- surprisal and surprisal x ambiguit beta-binomial model performs better best fit
expectations —l Y p guity p X

significant in the correct direction than non-linear control model

Future work . o

Test with different structures Data broadly follows theoretical predictions

- clearest evidence would come from enough adaptation to elicit a Fine et al. (2013) Harrington Stack et al. (2018)

garden path in the a priori more frequent structure

- suggestive evidence here that that's unlikely to happen within a
single experiment, at least for MV/RC ambiguity
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