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Abstract 
 

Recent input affects subsequent language processing. One explanation for this 
holds that comprehenders adapt their implicit linguistic expectations based on the 
input, so as to facilitate efficient processing. A number of studies have identified 
support for this hypothesis. Harrington Stack, James, and Watson (2018) report a 
failure to replicate one of these studies (Fine, Jaeger, Farmer, and Qian, 2013). We 
show that, to the contrary, the data from Harrington Stack and colleagues constitute 
strong support for the hypothesis of expectation adaptation. Several factors 
contribute to the difference in conclusions. For example, Harrington Stack and 
colleagues argue based on differences in p-values, which is known to be 
problematic. We instead employ well-formed Bayesian measures of evidentiary 
support to assess replication success. Most critically though, the new experiments 
by Harrington Stack and colleagues differ in design from the experiments they aim 
to replicate. We correct for these differences by means of the same single-
parameter belief-updating model previously employed by Fine and colleagues. The 
model provides trial-level predictions for the surprisal that comprehenders 
experience, based on previous input within and outside of the experiment. Trial-
level analyses find that surprisal based on adapted expectations strongly predicts 
reading times in both the original and the replication data. In fact, once the 
differences in design are corrected for, the two data are highly similar; replication 
tests estimate the posterior probability of a replication success to be ≫ .9999. We 
show how the same belief-updating model also predicts trial-to-trial priming, 
cumulative priming, and the inverse preference effect in priming.  

 
Keywords: expectation adaptation; sentence processing; Bayesian; belief-
updating; replication test; reading times 
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We reply to a reported failure (Harrington Stack, James, & Watson, 2018, henceforth HS18) to 
replicate a study out of our lab (Fine, Jaeger, Farmer, & Qian, 2013, henceforth F13). Both studies 
test a hypothesis about the adaptivity of implicit expectations during incremental sentence 
understanding—how comprehenders react to changes in the statistics of the input when they enter 
a new linguistic environment (such as an experiment or an encounter with an unfamiliar talker). 

Using Bayesian replication tests, we show that the new study is unlikely to constitute a 
replication failure. Rather, the design of the new study differs from the original study in ways that 
are predicted by the tested theory to lead to different effects. Once these differences are taken into 
account—by means of the same 1-parameter computational model that motivated the original 
experiments (Fine, Qian, Jaeger, & Jacobs, 2010)—replication tests show that the new study by 
Harrington Stack and colleagues is extremely likely to constitute a close replication of the original 
study by Fine and colleagues (the posterior probability of replication, compared to a null effect, is 
estimated to be ≫ .9999). Our analyses show that both the F13 and HS18 data provide clear and 
significant support the hypothesis of expectation adaptation. Indeed, the new experiments by HS18 
shed further light on the speed of expectation adaptation, and thus the degree to which implicit 
expectations during sentence understanding are continuously adjusted to facilitate efficient 
language understanding. We find that the effects of expectation adaptation are substantial, reducing 
per-word reading times by more than 50ms over the course of the experiment—a change of over 
80% in the net effect of syntactic expectations on reading times. 

Encouragingly, the model also predicts small effect sizes precisely where we observe them 
empirically. We discuss when small effect sizes are to be expected, and why (for reasons that link 
the present findings to research on error-based implicit learning accounts of syntactic priming). 
This, we show, helps to reconcile the conclusions offered by Harrington Stack and colleagues with 
those that we reach here—specifically, we agree that one of the qualitative conclusions made by 
Fine and colleagues actually has insufficient support in both F13 and HS18. We thus end with a 
concrete design proposal for future work based on our model. We begin by providing theoretical 
context.  

Theoretical background: Expectations and expectation adaptation 
One important step in the decoding of meaning from linguistic input is parsing—the inference 

of latent grammatical relations between the words in the input. This is a computationally complex 
problem: although we typically do not become consciously aware of it, there are many possible 
ways to combine a sequence of words into a grammatical parse. Comprehenders seem to overcome 
this problem at least in part by drawing on implicit gradient expectations based on implicit 
probabilistic knowledge about the relative (co-)occurrence statistics of words and latent syntactic 
structures. This is evident, for example, in effects of contextual predictability on processing times. 
Words and structures that are contextually predictable are typically processed more quickly (e.g., 
Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller, 2008; MacDonald, Pearlmutter, 
& Seidenberg, 1994; McDonald & Shillcock, 2003; Trueswell, Tanenhaus, & Garnsey, 1994; for a 
recent review, see MacDonald 2013). Expectation-based processing can be a rational response to 
the inevitable uncertainty involved in parsing (John T. Hale, 2001; Levy, 2008; Narayanan & 
Jurafsky, 2004), allowing more efficient processing (Smith & Levy, 2013; for review, see 
Kuperberg & Jaeger, 2016).  

Expectation-based processing raises questions about how comprehenders deal with situations 
in which their implicit expectations do not match the statistics of the linguistic input. 
Talkers/writers can differ in their lexical and structural preferences. Lexical and syntactic 
preferences can also differ based on the register (formal vs. informal) or genre (scientific writing 
vs. poetry). For example, passive structures are more frequent in formal, compared to informal, 
registers (Weiner & Labov, 1983). One question then is whether comprehenders ignore the 
resulting differences in the input statistics, or whether they somehow adjust their expectations 
towards the statistics of the current input. On the one hand, such expectation adaptation might 
require additional cognitive and neural resources. On the other hand, a failure to adjust one’s 
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expectations towards the actual statistics can annul the advantage that is afforded by expectation-
based processing: the efficiency of expectation-based processing depends on the extent to which 
the expectations reflect the actual statistics of the input. 

These considerations motivate the hypothesis of expectation adaptation developed by Fine and 
colleagues (Fine et al., 2013, 2010). Fine and colleagues hypothesized that comprehenders 
implicitly adapt their expectations about the relative frequency of words and structures in the 
current environment based on the previously experienced input within this environment. For 
example, a participant in an experiment would enter the experiment with more or less typical 
expectations based on the relative frequency of linguistic structures in previously experienced 
input. But as the experiment progresses, participants might adapt their expectations for the current 
environment based on the relative frequency of the linguistic structures in the input received so far 
during the experiment. This adaptation is hypothesized to proceed by incrementally and rationally 
integrating prior expectations (or, in Bayesian terminology, prior beliefs) with the observations 
made in the current environment, leading to adapted posterior expectations/beliefs after each new 
relevant observation. We emphasize this point as it is of direct relevance to the interpretation of the 
study we respond to here: adapted expectations are predicted to reflect a weighted combination of 
observations made in the present environment and expectations based on relevant previous 
language experience. Rational expectation adaptation predicts that a comprehender’s beliefs about 
the probability of a structure in a given linguistic context, pposterior(structure | context), are a function 
of: 

 
(i) the relative probability of that structure in that context in the comprehender’s 

language experience prior to the experiment, pprior(structure | context),1  
(ii) the relative proportion of occurrences of the structure in the relevant context within 

the experiment so far, count(structure, context) / count(context),  
(iii) the strength of the prior beliefs as transferred to the current experiment, and  
(iv) the absolute number of times the relevant context has been observed within the 

experiment, count(context)  
 
where (iii) and (iv) together determine the relative weighting of (i) prior beliefs about the 

relative probability of structures against (ii) the input from the present environment (with (iii) being 
the only degree of freedom, as we elaborate below). Bayesian belief-updating provides a way to 
model rational expectation adaptation, making it possible to compare human processing behavior 
against the predictions of a normative model (Bushong, Burchill, & Jaeger, n.d.; Fine et al., 2010; 
Kleinschmidt, Fine, & Jaeger, 2012; Myslín & Levy, 2016). The hypothesis of expectation 
adaptation thus constitutes a hypothesis about both why and how recent experience affects language 
processing (for related proposals, see also Chang, Dell, & Bock, 2006; Dell & Chang, 2013; Garrod 
& Pickering, 2009; Jaeger & Snider, 2013; Reitter, Keller, & Moore, 2011).  

Here, we focus on the two reading experiments described in F13 and the conflicting evidence 
in a recent large-scale replication attempt by HS18. We emphasize, however, that support for 
expectation adaptation now comes from a number of studies on spoken and visual language 
processing (Farmer, Fine, Yan, Cheimariou, & Jaeger, 2014; Fine & Jaeger, 2016a; Fine et al., 
2010; Fraundorf & Jaeger, 2016; Kamide, 2012; Kaschak, 2006; Kaschak & Glenberg, 2004; 
Ryskin, Qi, Duff, & Brown-Schmidt, 2017; Yan, Farmer, & Jaeger, 2018), including some studies 
that have begun to identify the potential limits of such adaptation (Liu, Burchill, Tanenhaus, & 
Jaeger, 2017; ongoing work by Rachel Ryskin and Sarah Brown-Schmidt). Since this body of 
evidence is largely not mentioned in HS18, we include summaries below. 

                                                   
1 We use “context” throughout to refer strictly to the linguistic context in which, say, a word or syntactic 

structure occurs.  “Environment”, by contrast, captures indexical variables such as talker, experiment, genre, 
register, etc. (for related discussion about the relation between context and environment, see Fine et al., 2013; 
Kleinschmidt & Jaeger, 2015; Qian et al., 2012) 
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Three qualitative predictions of expectation adaptation 
The reading experiments in F13 and HS18 investigate changes in so-called garden path 

effects—slow-downs in reading times when temporarily ambiguous sentence onsets are 
disambiguated towards the less expected parse—through the course of an experiment. The 
magnitude of such garden-path effects has been linked to the relative expectedness of the parse: the 
less expected the parse, the larger the slow-down in reading times at the disambiguation point (e.g., 
Garnsey, Pearlmutter, Myers, & Lotocky, 1997; McRae, Spivey-Knowlton, & Tanenhaus, 1998; 
Wilson & Garnsey, 2009). This makes garden-path sentences a suitable test bed for the study of 
implicit changes in expectations. 

Specifically, the experiments in F13 and HS18 focus on the garden path ambiguity in (1), 
between a matrix verb (MV) and a reduced relative clause (RC) continuation. The temporary 
ambiguity in (1) starts at the ambiguous verb form warned and is ended at the disambiguation 
point—before in (1a) or conducted in (1b). 

 
(1)  The experienced soldiers warned about the dangers … 
a.  ... before the midnight raid. (disambiguation towards MV) 
b.  ... conducted the midnight raid. (disambiguation towards RC)  
 
(2)   
a.  The experienced soldiers spoke about the dangers before the midnight raid.  

(unambiguous MV) 
b.  The experienced soldiers who were told about the dangers conducted the midnight raid. 

(unambiguous RC) 
 
Continuations like (1b) consistently elicit what is known as ambiguity or garden-path effects: 

reading times spike at the disambiguation point (e.g., conducted … in (1b)) where the ambiguity is 
resolved towards the relative clause interpretation, compared to unambiguous RCs (2b) (F. Ferreira 
& Clifton, 1986; MacDonald, Just, & Carpenter, 1992; Tabossi, Spivey-Knowlton, McRae, & 
Tanenhaus, 1994; Trueswell et al., 1994). No such ambiguity effect is found at the same region for 
ambiguous compared to unambiguous MVs, e.g., on before … in (1a) compared to (2a). 
Expectation-based accounts attribute this ambiguity effect to the fact that the ambiguous verb form 
warned is overwhelmingly more likely to occur with MVs (67% of the time) than RCs (.8%) in 
readers’ previous language experience (based on Roland, Dick, & Elman, 2007). According to these 
accounts, the slow-down in reading times at the disambiguation point is a function of the relative 
degree of expectation violation (the prediction error in the sense of, e.g., Dell & Chang, 2013; Fine 
& Jaeger, 2013). In line with this prediction, the magnitude of the ambiguity effect—i.e., the slow-
down at the disambiguation region—has been found to be smaller for ambiguous verb forms that 
are less biased towards the MV continuation in everyday language use (e.g., Hare, Tanenhaus, & 
McRae, 2007). 

This, Fine and colleagues argued, makes the magnitude of a garden-path effect a behavioral 
signature of the relative (un)expectedness of RCs and MVs at that point in the experiment. This in 
turn makes it possible to test whether comprehenders’ expectations for either structure change 
throughout the experiment. Specifically, Fine and colleagues tested three qualitative predictions of 
expectation adaptation. The first two predictions directly follow from the idea that comprehenders 
incrementally adapt their expectations towards the statistics of a novel environment as they are 
exposed to it: 

 
Prediction 1: With sufficient repeated observations of an a priori highly unexpected 

structure—such as RCs in contexts like (1) above—the surprisal of the a priori expected 
structure—such as MVs—should eventually increase so much that comprehenders now garden path 
for the a priori expected structure.  
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Prediction 2: At the same time, the surprisal of the a priori highly unexpected structure will 
decrease, thus reducing any garden path effects for that structure.  
 

With sufficient exposure within an experiment, it should thus be possible to adapt 
comprehenders’ environment-specific expectations to be opposite of a priori expectations based 
on everyday language input. The third prediction tested by Fine and colleagues relates to the idea 
that only relevant observations should affect a given expectation for a specific structure: 

 
Prediction 3: (After discounting for changes in reading speed due to unrelated factors) the 

magnitude of the garden path experienced on an a priori infrequent structure should only depend 
on observations that speak to the relative frequency of RCs and MVs in the relevant contexts. Thus, 
the number of intervening fillers, which do not provide linguistic contexts that inform the relative 
probability of RCs and MVs in contexts like (1), should not affect the magnitude of the garden 
path. Next, we summarize how Fine and colleagues set out to test these three predictions.  

Summary of the original study: Fine, Jaeger, Farmer, and Qian (2013) 
In order to test predictions about implicit expectations, or changes thereof, it is also necessary 

to make assumptions about how these expectations link to observable measures of processing 
difficulty. Although not critical to the hypothesis of expectation adaptation, Fine and colleagues 
assumed a log-reciprocal (surprisal) link between expectations and reading times during self-paced 
reading (Boston et al., 2008; Demberg & Keller, 2008; Frank & Bod, 2011; John T. Hale, 2001; 
Levy, 2008; Linzen & Jaeger, 2015; Smith & Levy, 2013). Here we follow this assumption. Indeed, 
as we show later, the data from HS18 and F13 exhibit almost identical increases in RTs for each 1 
bit increase in surprisal. 

Fine and colleagues present two self-paced reading experiments designed to test the three 
predictions outlined in the previous section. They found all three predictions supported by their 
data, though the strength of the support varied between the three predictions. Experiment 1 
employed a 2x2 within-participant design, exposing participants to a uniform mixture of 50% RCs 
and 50% MVs, half of each with the type of temporary ambiguity shown in (1) above and half 
without. Structure and ambiguity were randomly distributed across trials and counter-balanced 
across participants via Latin-square design, with fillers interspersed between critical RC and MV 
items. Figure 1 shows the design and the corresponding predicted change of RC and MV surprisal 
across the course of the experiment. The numerical predictions are derived from a Bayesian belief-
updating model first introduced for this purpose in Fine et al. (2010), and described later in this 
article. For now, the purpose of this visualization is merely to provide readers with an intuition of 
the predicted trial-by-trial effects of expectation adaptation. Following Fine and colleague, we 
assume that participants’ prior expectations at the beginning of the experiment reflect the relative 
proportion of RCs (~.008) and MVs (~.67) in natural language use. These estimates are obtained 
from a large sample of automatically parsed written British English (Roland et al., 2007), and are 
thus best thought of as course-grained approximation of the RC/MV statistics that an average 
(American English speaking) participant has experienced.  

Of note in Figure 1 is that RC surprisal is predicted to change much more than MV surprisal. 
As we show later, this is a direct consequence of the fact that RCs, compared to MVs, are 
unexpected based on everyday language experience, �̂�𝑝(𝑅𝑅𝑅𝑅) = .008, and thus highly surprising at 
the beginning of the experiment, 𝐼𝐼-(𝑅𝑅𝑅𝑅) = 	− log3 �̂�𝑝(𝑅𝑅𝑅𝑅) = 6.97	bits. We return to this asymmetry 
below, as it is of relevance to understanding when expectation adaptation is predicted to lead to 
detectable behavioral signatures. 

 
*** Figure 1 APPROXIMATELY HERE *** 



 

 - 7 - 

 
Figure 1  Design (shaded bars) and predicted changes in RC and MV surprisal (lines) over the 
course of the experiment for Experiment 1 in Fine et al. (2013). Bars show sentence types that participants 
would read in one of the Latin-square design pseudo-randomized lists. The model from which the predictions 
are derived is the same as in Fine et al. (2010) and described below. Although hard to discern in this plot, 
MV surprisal is slowly increasing throughout the experiment. 

In line with Figure 1, F13 found a significant decrease in the ambiguity effect for RCs, and an 
insignificant increase in the ambiguity effect for MVs. The decrease in the garden path effect for 
RCs was replicated in three self-paced reading experiments with the same design and different 
materials, reported in Craycraft (2014). The same effect was also replicated in three eye-tracking 
reading experiments with the same design and different items reported in (Yan et al., 2018). The 
decrease in the garden path effect for RCs was also observed in three further self-paced reading 
experiments on only RCs reported in Fine and Jaeger (Fine & Jaeger, 2016a). Additional conceptual 
replications of this finding—reduction in garden-path effects for an a priori unexpected structure 
when it is observed much more frequently in the current environment—come from reading 
experiments on other syntactic structures (e.g., Fine & Jaeger, 2011; Fine et al., 2010; Fraundorf & 
Jaeger, 2016; Kaschak, 2006; Kaschak & Glenberg, 2004; Wells, Christiansen, Race, Acheson, & 
MacDonald, 2009). Together, the evidence of over 10 self-paced and eye-tracking reading 
experiments on three different syntactic structures provides strong support for Prediction 2. 

F13’s first experiment also provides some support for Prediction 1—a numerical, but 
insignificant, increase in the ambiguity effect for the a priori more expected MV structure. Later 
studies on the RC/MV ambiguity with the same design have replicated this numerical trend 
(Craycraft, 2014; Yan et al., 2018). On the one hand, it is not surprising that this trend for MV 
garden paths only shows numerically: the hypothesis of expectation adaptation predicts a very 
small change in MV surprisal, compared to RC surprisal, throughout the experiment (see the red 
line in Figure 1). Nevertheless, this pattern arguably constitutes weaker support for Prediction 1, 
compared to the repeated and clear replication of Prediction 2. 

To put Prediction 1 to a stronger test, F13 conducted a second self-paced reading experiment 
on the RC/MV ambiguity. This second experiment employed a between-participant design. Figure 
2 (top) illustrates the stimuli seen by the two exposure groups, and the corresponding predicted 
changes in surprisal. Invisible to participants, the experiment consisted of three blocks. The RC-
First group read only RCs in Block 1, a total of 16 RCs. The Filler-First group read only fillers 
(also 16). In Block 2, both groups read 10 RCs interspersed with 20 fillers. In Block 3, both groups 
read 10 MVs interspersed with 15 fillers, resulting in a total of 71 sentence trials across the entire 
experiment. Half of the MV/RCs in each block contained the ambiguity, half did not. This was 
counter-balanced across participants using a Latin-square design. 
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Figure 2  Design (shaded bars) and predicted changes in RC and MV surprisal (lines) over the 
course of the experiment for Experiment 2 in Fine et al. (2013), Panel A, and Harrington Stack et al. (2018), 
Panel B. Predictions for structures that are not present in a block, and thus cannot be tested in that block, 
are shown dashed. Critical and filler trials that Harrington Stack et al. (2018) removed from analysis are 
shown in white. 

This design affords qualitative tests of all three predictions made above. In line with Prediction 
1, F13 reported a clearly significant ambiguity effect for MVs in Block 3: after repeated exposure 
to the a priori less frequent RC structure, disambiguation towards the MV structure led to the type 
of processing slow-down typically associated with RCs. This main effect of ambiguity across the 
two exposure groups could, however, be confounded: F13 did not conduct a control condition in 
which both Blocks 1 and 2 had only fillers. It is thus unclear whether the MV stimuli in Block 3 
just happened to exhibit garden path effects because of their lexical properties, or whether they 
exhibited the garden path because of the preceding exposure to RCs. Critically, F13 also found a 
significant interaction between ambiguity and exposure group for Block 3: The garden-path for 
MVs in Block 3 was larger for participants who had seen more RCs in Blocks 1 and 2 (the RC-first 
group), compared to participants in the Filler-first group. This provided more decisive support for 
Prediction 1. 

F13’s Experiment 2 also provided additional support for Prediction 2, and initial support for 
Prediction 3. In support of Prediction 2, F13 found that the ambiguity effect on RCs decreased 
throughout Blocks 1 and Block 2 in the RC-first group. This decrease was significant in a trial-
level analysis that let structure, ambiguity, and their two-way interaction interact with item order 
(the number of RCs observed in the preceding stimuli). The effect did, however, not reach 
significance in a more coarse-grained block-level analysis that compared the ambiguity effect on 
RCs in Block 1 against Block 2. Given that the block-level analysis has less power, and given that 
Prediction 2 has now been confirmed by a large number of studies, we do not discuss this further 
(incl. HS18, see below).  

Finally, in support of Prediction 3, F13 found that the ambiguity effect on RCs in Block 2 was 
marginally smaller for the RC-first group, compared to the Filler-first group (p=.08). Since both 
groups of participants read equally many sentence trials preceding Block 2, and equally many RCs 
(and fillers) during Block 2, this difference cannot be explained by adaptation to the experimental 
task. 

Summary of Stack Harrington, James, and Watson (2018) 
HS18’s first experiment was intended as an extension based on the design of F13’s Experiment 

1 but failed to replicate the basic reduction of the RC ambiguity effect observed in F13 (Prediction 
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2).  We do not discuss HS18’s Experiment 1 further here: in addition to F13 (Experiment 1 and 2) 
the reduction in the RC ambiguity effect has been successfully replicated in at least ten other 
experiments using both self-paced reading (Craycraft, 2014; Farmer, Fine, & Jaeger, 2011; Fine & 
Jaeger, 2016a) and eye-tracking reading paradigms (Farmer et al., 2014; Yan et al., 2018). Indeed, 
all six attempts to replicate this effect in our lab have found it, and several of these studies arguably 
had higher power than HS18’s Experiment 1. All of these experiments had similar numbers of items 
and participants as HS18’s Experiment 1. Across studies, replications of F13’s Experiment 1 cover 
a variety of different items and additional controls. This includes counterbalancing of item order 
and item identity across experimental lists (Craycraft, 2014; Fine & Jaeger, 2016a). These 
replications thus avoid confounding effects of expectation adaptation with well-documented item 
effects based on, for example, the item’s matrix verb (Hare et al., 2007; McRae et al., 1998; 
Trueswell et al., 1994). This control was absent in Experiment 1 of both F13 and HS18. In short, it 
is very likely that HS18’s Experiment 1 constitutes a Type II error (false negative).  

We thus focus on HS18’s second experiment, which also forms the bulk of their argumentation. 
This experiment followed the same between-participant design as F13’s Experiment 2 but used 
twice as many items in each block as well as about five times as many participants (see Figure 2). 
HS18 analyzed their data using the same block-level analyses that constituted the planned analysis 
in F13. HS18 found that the ambiguity effect for RCs decreased from Block 1 to Block 2 in the 
RC-first group. Whereas this effect was only marginal in the block-level analysis of F13, the effect 
was significant in HS18. This replicates the support for Prediction 2. With regard to Predictions 1 
and 3, however, the block-level analyses do not seem to support F13’s conclusions. Only a marginal 
ambiguity effect was observed for the MVs in Block 3, and there was no interaction of ambiguity 
and exposure group. Similarly, the ambiguity effect on RCs in Block 2 did not differ between the 
two exposure groups.  

HS18 also conducted power analyses of both F13 and HS18, based on which they concluded 
that the original study was under-powered, and that their replication attempt had drastically higher 
power (but see our Appendices A.2, B.2, and C.2). HS18 take that their results to show that (1) the 
results reported in F13 do not replicate, and that (2) there either is no expectation adaptation during 
sentence understanding, or expectation adaptation proceeds slowly, perhaps taking multiple days 
of exposure. Next, we show why we think these conclusions are not warranted. 

A failure to replicate? Probably not.  
Rather a new data point predicted by expectation adaptation 

HS18 do not report any direct test that assesses the extent to which their data replicates F13’s. 
Instead, HS18 argue based on the failure or success of replicating significance patterns. Since this 
is known to be problematic (Kass & Raftery, 1995; Raftery, 1995; Wagenmakers, 2007), we 
employ Bayesian replication tests to assess whether the results observed in HS18 constitute a failure 
or success to replicate the findings in F13 (Verhagen & Wagenmakers, 2014). For completeness’ 
sake, we first present a replication test under the assumption that Harrington Stack and colleagues 
indeed replicated the design of the original study—i.e., assuming that the hypothesis of expectation 
adaptation would actually predict the same effect for both experiments. However, as we then 
discuss, the two studies, while similar, differ in their design in ways that change the predicted 
effects. We thus use an existing model of expectation adaptation (Bushong et al., n.d.; Fine et al., 
2010) to derive predictions for both the design in F13 and the design in HS18. We then ask how 
likely it is that the data in HS18 constitute a replication with regard to these predictions—put 
differently, we ask how (in)compatible the two data sets are in the degree to which they follow the 
hypothesis of expectation adaptation. Throughout, we talk about the likelihood of replication to 
acknowledge that assessments of replication are a statistical inference, something that is easily 
forgotten when comparing dichotomous differences in significance patterns. We find that the new 
data in HS18 are exceedingly likely to constitute a replication of F13. Both data sets are highly 
similar, and both provide clear support for the predictions of the hypothesis of expectation 
adaptation.  
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Replication test under (wrong) assumption of identical designs: Neither clear failure, nor 
clear success 

We repeated the linear mixed-effects analyses reported by Harrington Stack and colleagues 
over both the F13 and HS18 data. For each of Predictions 1-3, we ask whether the results from the 
HS18 data replicate the results from the F13 data. This is achieved by calculating the replication 
Bayes Factor, BFr0 for each of the three pairs of analyses (for details, see Verhagen & 
Wagenmakers, 2014).2 This BFr0 quantifies the extent to which the effect size observed by HS18 
replicates the effect observed by F13, as contrasted with the hypothesis that the true effect size is 
zero (the skeptic’s null hypothesis).  

Figure 3 summarizes the results of the three replication tests. Neither the replication, nor the 
null hypothesis, has a posterior probability larger than .95 (BF > 20). Following conventions 
proposed in Rafterty (1995), we find “positive” support for the hypothesis that Prediction 2 
replicates (BFr0 = 5.6). Conversely, for Predictions 1 and 3 the replication test returns weak to 
positive support for the null hypothesis (over the replication hypothesis; for Prediction 1: BF0r = 1 
/ BFr0 = 16.7; Prediction 3: BF0r = 3.8). Bayesian replication tests thus seem to provide decisive 
support neither for nor against a replication. This might be surprising given the lack of significant 
effects for Predictions 1 and 3 in HS18’s data despite the large number of participants. However, 
unlike the Bayes factor used here, p-values do not provide a well-formed measure of evidentiary 
support (Kass & Raftery, 1995; Raftery, 1995), and arguments based on significance patterns can 
be misleading (Vasishth & Gelman, 2017; Wagenmakers, 2007). 

 

 
Figure 3  Replication Bayes Factors, BFr0, for each of the three predictions. This test assumes that 
the predicted effect sizes for the original F13 study and the new HS18 study are identical (as we discuss 
below, this is not the case). Dotted lines show the posterior distribution of effect sizes from the original study 
(Fine et al., 2013, Experiment 2), which is used as prior for the effect size in the replication test. Solid lines 
show the posterior distribution of effect sizes after the replication study is taken into account (Harrington 
Stack et al., 2018). The gray dots indicate the probability density for an effect size of zero (the skeptic’s null 
hypothesis). The ratio of these two values—a measure of the decrease in the probability of the null hypothesis 
after seeing the replication data—gives the result of the replication test, BFr0. BFr0 < 1 indicates that the 

                                                   
2 Specifically, we calculated replication Bayes Factors with the R code provided by Josine Verhagen 

(http://josineverhagen.com/?page_id=76). Effect sizes were estimated as the t-values of the critical 
interactions for Predictions 1-3 in the respective linear mixed-effects regressions over the original (F13) and 
replication experiment (HS18). The number of observations that went these t-values were estimated as the 
degrees of freedoms for the critical interactions, as estimated via Satterthwaite’s approximation for HS18 and 
Kenward-Roger’s approximation for F13 to avoid approximation errors on the smaller data set  (implemented 
in lmerTest, Kuznetsova, Brockhoff, & Christensen, 2017). Following Verhagen and Wagenmakers (2014), 
we use BFr0 to refer to Bayes Factor comparing the hypothesis of replication against the hypothesis of a null 
effect, and BF0r for the inverse. 
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probability of the skeptic’s null hypothesis has increased after considering the results of the HS18. BFr0 > 1 
indicates that the probability of the null hypothesis has decreased.  

The replication test reported above takes for granted the premise that HS18 constitutes a 
replication of the original design—that the analyses of the two experiments are predicted to yield 
the same effect. As we discuss next, this assumption is not warranted, leading us to assess the 
degree to which the results of the two experiments are predicted to differ. 

Changing the number of RCs and MVs in the experiment changes the predictions 
In Appendix C, we summarize differences in the design and materials of F13’s and HS18’s 

experiment that limit the extent to which HS18 is expected to replicate the findings of F13. Here, 
we focus on the difference that is perhaps most obviously relevant to the hypothesis of expectation 
adaptation. This difference is evident when one compares the two panels of Figure 2 above: the 
new experiment in HS18 doubled the number of RCs and MVs in each block. As a result, the mean 
surprisal for RCs and MVs in each block, and thus also the critical differences in surprisal across 
groups and blocks relevant to Predictions 1-3—i.e., the predicted effects—differ between the two 
studies. This follows from the hypothesis of expectation adaptation: the predicted change in RC 
and MV surprisal is a result of weighing prior expectations (based on previous experience outside 
of the experiment) against the local statistics of input in the current environment (the experiment). 
As outlined in (i)-(iv) above, adapted expectations are thus predicted to be a function of not only 
the relative probabilities of the structures in the experimental input so far, but also their absolute 
frequencies (the latter affect the weight of recent experience against prior language experience; see 
(iii) and (iv) above). The design changes made in HS18 change the absolute frequency of the 
structures within the experiment and thus the predictions made by the hypothesis of expectation 
adaptation. 

It is thus possible that the inconclusive outcome of the replication test reported in the previous 
section is at least in part due to the fact that we would predict the two studies to yield different 
results. To address this possibility, we draw on an existing computational model of expectation 
adaptation to derive trial-level predictions that correct for differences in the design of the two 
studies.  

Belief-updating as a model of expectation adaptation 
The specific model we employ here is developed and tested in Bushong, Burchill, and Jaeger 

(n.d.).3 Appendix A.1 provides a summary of the model. The model uses Bayesian belief-updating 
to predict changes in the probability of RCs, MVs, and other structures in the context of an RC/MV 
garden-path inducing verb like “warned”. This is the model we used to derive the predictions in 
Figures 1 and 2. The belief-updating model describes comprehenders’ implicit probabilistic 
knowledge (or in Bayesian terminology, “beliefs”) as probability distributions over probabilities of 
possible syntactic structures. These distributions capture a rational comprehender’s uncertainty 
about the true probability of RCs, MVs, and other structures. The model has three free parameters 
that describe the relative count of RCs, MVs, and other structures that comprehenders are assumed 
to have experienced prior to the experiment. Bayesian belief-updating tells us how a new 
observation—such as an RC or MV—changes these prior beliefs to the updated posterior beliefs: 
by adding a count of 1 to whatever structure was observed. This updating process adds zero degrees 
of freedom to the model. Specifically, Bayesian belief-updating constitutes a normative model in 
that it describes belief-updating if the integration of prior experience and the current input proceeds 

                                                   
3 The model extends the original model by Fine et al. (2010), where it was used to analyze expectation 

adaptation for another type of garden path structure. Whereas the original model considered only two 
outcomes (e.g., RC and MV), the model we employ here captures changes in the probability of RCs, MVs, 
but—more appropriately—also the probability of other possible structures that can occur after syntactically 
ambiguous verb forms. This does not lead to any qualitative changes in the predictions relevant for the current 
purpose, compared to the original model from Fine and colleagues, but moves towards a model with fewer 
simplifying assumptions. For further discussion, we refer to Bushong, Burchill, and Jaeger (n.d.). 
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rationally, making it a useful ‘ground truth’ model for expectation adaptation in human 
comprehenders (on the utility of normative models, see also Griffiths, Chater, Kemp, Perfors, & 
Tenenbaum, 2010; Massaro & Friedman, 1990). 

We can reduce the degrees of freedom for the belief-updating model further by fixing the prior 
beliefs about the relative probability of structures to what is observed in language corpora (as an 
approximation of participants’ prior language experience). That is, we do not allow the model to 
freely choose how frequent RCs, MVs, or other structures are in previous experience. Instead, we 
force the model to believe that—prior to seeing any evidence to the contrary—RCs, MVs, and other 
structures have probabilities that reflect their relative frequencies in language use (in the relevant 
context of ambiguous verb forms like “warned”). This limits the flexibility of the model, and 
follows the common assumption that language users acquire implicit statistical knowledge about 
the relative frequency of linguistic structures in the input (Chang et al., 2006; Dell & Chang, 2013; 
Elman, 1990; Elman, Hare, & McRae, 1996; MacDonald, 1999, 2013; Tabor & Tanenhaus, 1999). 
This leaves our belief-updating model with only one degree of freedom: the strength of the prior 
belief, 𝜏𝜏. Intuitively, it serves as a crude approximation of participants’ estimate of the relevance 
of previous language experience to the current environment. As we discuss later in more depth, 𝜏𝜏 
also co-determines how quickly expectations—and thus surprisal—are predicted to change 
throughout the course of the experiment. 

With sufficient data from suitable designs, 𝜏𝜏 can be inferred from comprehension data (see Fine 
et al., 2010; Kleinschmidt et al., 2012). Here we instead committed a priori to a weak to moderately 
strong prior, 𝜏𝜏 = 100, similar in magnitude to priors employed in our previous work. For example, 
for a different garden path structure, Fine et al. (2010) found 𝜏𝜏=178 to provide the best fit against 
self-paced reading data, with similarly good fits for 𝜏𝜏 ≥ 100. A 𝜏𝜏 of 100 means that the model 
adapts within the experiment as if it has experienced a total of 67 MVs and .8 RCs prior to the 
experiment (recall that p?@AB@(RC) ≈ .008  and p?@AB@(MV) ≈ .67  based on corpus counts in 
Roland et al., 2007). After 100 relevant new data points, 4  this belief-updating model predicts 
expectations that reflect a balanced 50/50 mixture of prior beliefs and the statistics observed in the 
100 observations made within the experiment.  

Figure 4 illustrates how the model allows us to derive predictions for any sequence of sentence 
types, as we did for Figures 1 and 2. Panel B shows the changing beliefs about the relative 
probability of RCs and MVs predicted by the belief-updating model as a function of the inputs in 
Panel A. From these posterior beliefs, we can obtain predicted environment-specific expectation—
and thus surprisal—of, for example, RCs on each trial in the experiment by marginalizing over the 
uncertainty about p(RC) at that trial. Panel C shows the predicted environment-specific 
expectations for RCs, MVs, and other structures than can occur in the ambiguous context (i.e., after 
a verb like warned) across all trials of the experiment. Finally, Panel D shows the resulting surprisal 
that would be experienced for a structure if it were observed on that trial.  

 
*** Figure 4 APPROXIMATELY HERE *** 

 

                                                   
4 We follow Fine and colleagues (2013) and assume that verb forms ambiguous between the RC and MV 

interpretation (such as warned) constitute the relevant context. 
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Figure 4  Illustration of expectation adaptation modeled as Bayesian belief-updating with 𝜏𝜏 = 100. 
Panel A: As an example, we show the input experienced by participants in the RC-first group in Harrington 
Stack et al. (2018). Panel B: Model predicted changes in participant’s beliefs—and uncertainty— about the 
relative probability of RCs, MVs, and other structures, based on the inputs shown in Panel A. Fillers are 
stimuli without the relevant context (here: an ambiguous verb form like warned); RCs, MVs, and other 
structure all contain the relevant context. Panel C: Model predicted environment-specific probability of 
structures over the course of the experiment (marginalizing over uncertainty in Panel B). Panel D: Resulting 
surprisal of structures. Predicted expectations and surprisal for structures not present in a block are shown 
as dashed lines. 

A few basic observations are worth highlighting. As can be seen in Figure 4, the belief-updating 
model predicts that an observation of a structure reduces the surprisal for the next observation of 
that same structure. In short, although this is not our focus here, the belief-updating model predicts 
trial-to-trial syntactic priming in comprehension (as observed in, e.g., Arai, Van Gompel, & 
Scheepers, 2007; Thothathiri & Snedeker, 2008; Traxler, 2008). The model also predicts that these 
changes in surprisal persist over intervening trials, unless a competing structure intervenes 
(Pickering, McLean, & Branigan, 2013; as observed in, e.g., Tooley, Swaab, Boudewyn, Zirnstein, 
& Traxler, 2013), and that the effects of previous observations accumulate (e.g., Fine & Jaeger, 
2016b). As we show more directly later, the model also predicts the inverse preference effect of 
syntactic priming: on a trial-by-trial basis, less expected structures lead to more change in 
expectation and surprisal (as observed in, e.g., Arai & Mazuka, 2013; Fine & Jaeger, 2013). Indeed, 
this is the explanation for the important asymmetry we noted earlier: while the surprisal of RCs 
(the a priori unexpected structure) is predicted to change rapidly, the surprisal of MVs (the a priori 
expected structure) changes much more slowly.  

For comparison to our parametrization of 𝜏𝜏 = 100, we also present predictions for 𝜏𝜏 = 1, 10, 
1,000, 10,000. This allows us to compare our predictions both to the hypothesis that adaptation 
essentially ignores prior beliefs based on previous language experience (𝜏𝜏 = 1 ), and to the 
hypothesis that there is no expectation adaptation (𝜏𝜏 = 10,000). For 𝜏𝜏 = 1, the model’s beliefs will 
be based to 90% on the statistics of the experiment after just nine relevant observations within the 
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experiment. For 𝜏𝜏 = 10,000, on the other hand, even the 52 RCs and 20 MVs in HS18’s design 
will lead to little change from the model’s prior beliefs. We briefly illustrate this latter point so as 
to allow readers to develop intuitions about the model. For 𝜏𝜏 = 10,000, exposure to 52 RCs within 
the experiment increases the prior count of RCs from 80 RCs assumed to have been observed before 
the experiment (=10,000 * .008) to 132 RCs (=80 + 52) at the end of the experiment. Conversely, 
the 20 MVs within the experiment increase the prior count from 6,700 to 6,720 MVs. For 𝜏𝜏 =
10,000, the model thus predicts RC surprisal to decrease by .71 bits over the entire experiment 
(compared to 5.3 bits change in surprisal for 𝜏𝜏 = 100), and for MV surprisal to increase by .006 
bits (compared to .4 bits for 𝜏𝜏 = 100). That is, for 𝜏𝜏 = 10,000, RC and MV surprisal is close to 
constant—the predicted changes are at least an order of magnitude smaller than for 𝜏𝜏 = 100. 

Replication test after correction for differences in design: a clear replication success 
Now that the belief-updating model is introduced, we return to HS18’s decision to double the 

number of RCs/MVs in each block, compared to F13’s design. The belief-updating model allows 
us to correct for this difference in design by comparing the trial-level effects of predicted surprisal. 
This also affords an opportunity to break new ground in the study of expectation-based 
processing—and specifically surprisal effects—during reading. Previous tests of the surprisal link 
hypothesis have been conducted under the simplifying assumption that expectations, and thus 
surprisal, are constant (e.g., Boston et al., 2008; Frank & Bod, 2011; John T. Hale, 2001; Linzen & 
Jaeger, 2015; Smith & Levy, 2013; but see Fine et al., 2010; Kleinschmidt et al., 2012; Myslín & 
Levy, 2016). Here we tested whether surprisal that results from adapted expectations based on 
recent input can explain reading times in the disambiguation region of a garden path structure. 

Method. Specifically, we employed linear mixed-effects regression to analyze RTs in the 
disambiguation region as a function of the structure’s predicted surprisal (in bits, centered) based 
on the belief-updating model with 𝜏𝜏 = 100 , ambiguity (sum-coded: 1 = ambiguous, -1 = 
unambiguous), and their interaction. We predict effects of surprisal for the disambiguation region 
of temporarily ambiguous structures. We also predict small effects of surprisal for the unambiguous 
structures. This latter prediction follows, for example, under the hypothesis that sentence 
understanding involves inference under uncertainty over noisy input (Bicknell & Levy, 2011; Levy, 
2011). In short, we predict an interaction between surprisal with ambiguity, and possibly a main 
effect of surprisal. 

The linear mixed-effects regression included the maximal converging random effect structure 
justified by the design.5 To be maximally conservative, we analyze residual logarithm-transformed 
RTs that were corrected for both linear effects of word length and non-linear effects of trial position. 
These corrected log-RTs were obtained by fitting two separate generalized additive mixed models 
(GAMM, Wood, 2017; as implemented in mgcv, Wood, 2016) to the filler RTs of F13 and HS18. 
The predictions of this GAMM were then removed from the RTs on the disambiguation region of 
RCs and MVs to obtain the corrected (residual) RTs. Unlike the standard approach to RT 
correction, this GAMM-based RT correction removes large effects of adaptation to the task of self-
paced reading, as participants get used to pressing the space bar to read the next word. Such task 
adaptation can have substantial effects, as shown in Panel A of Figure 5, with average per-word 
RTs decreasing by about 150ms (33%) over the course of the experiment. A failure to remove 
effects of task adaptation would otherwise confound our analysis in favor of our surprisal 
predictions. The GAMM-based approach also corrects for a second consequence of HS18’s 
decision to double the number of stimuli per block: task adaptation affects the RTs in the different 
blocks differently in F13 and HS18 (a problem also acknowledged by Harrington Stack and 
colleagues, p. 875). In short, our approach ensures that we are comparing likes with likes when 

                                                   
5 The full formula: residual RTs ~ Surprisal * Ambiguity + (1 | Subject) + (0 + Surprisal || Subject) + (0 

+ Ambiguity || Subject) + (0 + Surprisal:Ambiguity || Subject). Analyses that additionally included a main 
effect of structure (sum-coded: 1 = MV, -1 = RC) to capture possible differences in the processing of these 
structures that are independent of surprisal yield the same result.  
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comparing the replication data from HS18 to the original study. Appendix B provides additional 
information on the GAMM-based RT correction, and further clarification as to why we log-
transformed RTs.  

For the sake of comparison, we also present analyses of the standard untransformed word 
length-corrected RTs that were employed in both F13 and HS18 (derived from a linear mixed 
model, as implemented in lme4, Bates, Maechler, Bolker, & Steven Walker, 2015). Like the 
corrected log-RTs, these standard corrected RTs were obtained by fitting two separate models to 
the filler RTs of F13 and HS18. Details for both correction procedures are provided in Appendix 
B.3. All analyses were conducted in R (R Core Team, 2017). Figure 5 shows that the GAMM-
based approach successfully captures task adaptation (Panel C), whereas the standard 
residualization approach does not (Panel B). We note that, as is indeed the case, the corrected RTs 
for RCs and MVs are not expected to pattern with those of fillers. RT correction is meant to remove 
solely the effects of task adaptation.  

 
*** Figure 5 APPROXIMATELY HERE *** 
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Figure 5  Panel A: Uncorrected RTs decrease quickly as participants adapt the unfamiliar task of 
self-paced reading (here shown for Harrington Stack et al., 2018). Points reflect average RTs obtained by 
first averaging all per-word RTs across all regions within a sentence, and then averaging these mean per-
word RTs across participants. Error bars show 95% bootstrapped CIs based on the by-subject mean per-
word RTs. Panel B: standard word length-corrected RTs employed in the analyses reported in Fine et al 
(2013) and Harrington Stack et al. (2018). Panel C: residuals of GAMM-based trial and word length-
corrected log-RTs that remove effects of adaptation to the self-paced reading task, thereby de-confounding 
comparison across the two experiments. Gray lines show smooths through the corrected filler RTs. 

Results. Figure 6 summarizes the results for both F13 and HS18 for 𝜏𝜏 = 100, for both trial and 
word length-corrected log-RTs and standard-corrected RTs. For both data, and for both dependent 
variables, we find a significant main effect of adapted surprisal (p < .0001 for both F13 and HS18), 
and a significant interaction with ambiguity indicating that the effect of surprisal was larger for 
ambiguous structures (p < .002 for F13, p < .0001 for HS18). Simple effects analysis found that the 
effect of adapted surprisal was significant for both ambiguous (ps < .0001) and unambiguous 
structures (ps < .01), with similar effect sizes across the two data sets. For ambiguous structures, 
our analyses find an increase in 25.4 and 27.5ms in per-word RTs for every bit of surprisal in F13 
and HS18, respectively.  For unambiguous structures, the increase per bit of surprisal is 16.4 and 
17.7ms in F13 and HS18, respectively. Interestingly, this striking similarity in the effects of 
surprisal held despite the fact that the two data sets exhibited ambiguity effects of slightly different 
magnitude—a difference that is to be expected given that the F13 and HS18 differed in the lexical 
materials they employed in the sentence garden path stimuli. 

 
*** Figure 6 APPROXIMATELY HERE *** 

 

 
Figure 6  Coefficient estimates and confidence intervals for our re-analyses of Fine et al. (2013) and 
Harrington Stack et al. (2018), correcting for differences in the designs of the two experiments. Both the 
results for trial position and word length-corrected log-RTs (left panel) and the results for standard word 
length-corrected RTs (right panel) are shown (𝜏𝜏 = 100).  

To assess whether the results from HS18’s new design replicates the results from the original 
F13 design when the data is analyzed at this level—i.e., when correcting for the differences in the 
design, we calculate the replication Bayes factor BFr0 for the effect of adapted surprisal and its 
interaction with ambiguity. As shown in Figure 7, we find “very strong” support for the hypothesis 
that the effects of both adapted surprisal and its interaction with ambiguity replicate from F13 to 
HS18 (all BFr0s > 150). Indeed, the BFr0s indicate that the posterior probability that HS18 
constitutes a replication of F13 is ≫ .9999, and the posterior probability that HS18 constitutes a 
null effect is ≪.0001.  
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*** Figure 7 APPROXIMATELY HERE *** 
 

 
Figure 7  Replication Bayes Factors, BFr0, for the effect of surprisal (top) and its interaction with 
ambiguity (bottom) for both word length and trial position-corrected log-RTs (left) and standard word 
length-corrected RTs (right). Unlike the tests in Figure 3, the replication tests shown here take into account 
that the design employed by Harrington Stack and colleagues (2018) differs from the original design 
employed by Fine and colleagues (2013).  

In summary, once we correct for differences in the design, the results of two experiments are 
very compatible, with both experiments yielding the predicted surprisal effect and the predicted 
interaction with ambiguity. Indeed, for the word length and trial position-corrected log-RTs the 
posterior distribution after taking into account the replication data from HS18 suggest larger effect 
sizes for the critical interaction, compared to F13.  

Both experiments also present clear evidence that adapted surprisal provides the best fit against 
the data. This is shown in Figure 8. For both F13 and HS18, a prior strength that allows adaptation 
within the experiment (𝜏𝜏 = 100) present a better model of human RTs than large 𝜏𝜏s for which 
barely any change in RC and MV surprisal is predicted. 6  Figure 8 further shows that 
comprehenders’ expectations are not solely based on the statistics of the input within the experiment 
(e.g., the fits for 𝜏𝜏 = 1 are worse than the fits for 𝜏𝜏 = 100). Rather, comprehenders integrate the 
statistics of recent input with prior beliefs based on previous language experience—as predicted by 
rational expectation adaptation. 

 
*** Figure 8 APPROXIMATELY HERE *** 

 
                                                   
6 Since all analyses compared here have the same degrees of freedom, better data (log) likelihoods also 

indicate better Aikeken and Bayesian information criteria (AIC, BIC). 
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Figure 8  Log data likelihood of the observed RTs depending on	𝜏𝜏 (higher likelihood indicates better 
fit against the RTs from the experiments). Both the observed GAMM-based trial position and word length-
corrected RTs (left column) and the observed standard word length-corrected RTs (right column) in the two 
experiments are more likely when adaptation can occur within the experiment (e.g., 𝜏𝜏 = 100) than when 
expectations are assumed to be essentially stationary (𝜏𝜏 = 10,000).  

Our trial-level re-analysis thus concludes with high confidence that HS18 constitutes a clear 
replication. What does all of this mean for the three qualitative predictions made by Fine and 
colleagues? Arguably, one important result of F13 was that they found evidence that an a priori 
highly expected structure (here MVs) could eventually become sufficiently unexpected to elicit a 
garden path (Prediction 1). The analyses we have conducted so far do not directly address this 
question. Indeed, the belief-updating model predicts smaller effects of surprisal for MVs, compared 
to RCs (recall Figure 4 above). Before we assess whether F13 and/or HS18 provide evidence of 
changes in, specifically, MV surprisal, we thus briefly take a step back and ask how much of an 
effect we expect to see for MV vs. RC surprisal. As we discuss next, this also holds the answer to 
an important question raised by Harrington Stack and colleagues about the speed of adaptation.  

How rapidly do comprehenders adapt their expectations? 
Of the five values for 𝜏𝜏 that we have considered here, the best-fitting 𝜏𝜏 is the same for both F13 

and HS18. This value, 𝜏𝜏 = 100, is of similar magnitude as the best-fitting prior strength in the only 
previous work that has explored this question for another syntactic structure (Fine et al., 2010). As 
mentioned above, the strength of the prior beliefs 𝜏𝜏 co-determines how quickly expectations can 
change. With a 𝜏𝜏 of 100, it takes 100 occurrences of the relevant context within the experiment 
(here: verb forms that allow both the RC or MV parse) until comprehenders’ beliefs are predicted 
to be a 50/50 mixture of their prior beliefs and the input statistics observed in the experiment. At 
first blush, this might sound slow and thus in line with the concluding consideration of Harrington 
Stack et al. (2018): “one possible explanation for these results is that adaptation does, in fact, occur, 
but that it does not do so rapidly” (p. 876). This interpretation would be misleading, however, for 
reasons we lay out next.  

The reason for this is that 𝜏𝜏 is only one of two properties that together determine the speed with 
which the implicit expectations for a structure are predicted to change. The second property is the 
prior probability of the structure. This is already apparent in the predictions visualized in Figure 4, 
where the surprisal for the a priori less expected structure changes much more quickly. Figure 9 
more directly illustrates the relation between the prior probability of a structure (at any point during 
the experiment) and the change in the structure’s probability (Panel A) and surprisal (Panel B) 
following one observation of that structure. What this figure shows is the typical signature of error-
based learning: less expected observations lead to more change in expectation (Chang et al., 2006; 
Chang, Janciauskas, & Fitz, 2012; Dell & Chang, 2013; Fine & Jaeger, 2013; Jaeger & Snider, 
2013). This is precisely the pattern that is observed in studies on trial-to-trial syntactic priming or 
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persistence, where it is often coined the “inverse preference” or “inverse frequency” effect (e.g., 
Arai & Mazuka, 2013; Bernolet & Hartsuiker, 2010; V. S. Ferreira, 2003; Fine & Jaeger, 2013; 
Jaeger & Snider, 2008). Of note is that the inverse preference effect is a prediction of the belief-
updating model, where it follows from the ideal integration of new evidence with beliefs based on 
previously experienced inputs. This differs from error-based models, in which the inverse 
preference effect is explicitly coded into the learning rule (such as Chang et al., 2006; for 
discussion, see also Jaeger & Snider, 2013).7  

Panel B shows how the hypothesized surprisal link between expectations and reading times 
further exaggerates the inverse preference effect: the predicted change in surprisal after an 
observation of a structure is an exponential function of its prior probability.  

 
*** Figure 9 APPROXIMATELY HERE *** 

 

 
Figure 9  Change in the marginal probability (Panel A) and surprisal (Panel B) of a structure after 
a single observation of that structure, depending on the prior probability of the structure and the strength of 
the prior beliefs, 𝜏𝜏.  

Figure 9 and Figure 4 thus point to an important distinction between the speed of belief-
updating and the resulting change in surprisal. The former is determined by 𝜏𝜏, and in this sense held 
constant for RCs and MVs. The latter, however, depends both on 𝜏𝜏 and the prior probability of a 
structure. Crucially, for the type of experiment discussed here, it is the latter—the change in 
surprisal—that is predicted to determine the ability to detect an effect of expectation adaptation. 
Rational expectation adaptation thus predicts that it is much harder to detect the predicted changes 
in surprisal for an a priori highly expected structure (e.g., MVs), compared to the predicted changes 
for an a priori highly unexpected structure (e.g., RCs).  

What does all of this mean for the experiments in F13 and HS18? For an a priori highly 
unexpected structure, a 𝜏𝜏 of 100 actually predicts rapid changes in that structure’s surprisal. For 
example, for 𝜏𝜏 = 100 the observation of a single RC will decrease the surprisal of the next RC by 
1.16 bits from 6.97 bits to 5.81 bits. That is a decrease in surprisal of 17% after a single observation 
in the experiment. For MVs, on the other hand, it should be much harder to detect changes in 

                                                   
7 Harrington Stack et al. (2018) seem to assume that prediction errors are only encountered in ambiguous 

structures: “when comprehenders encounter the same verbs in unambiguous contexts, the lack of ambiguity 
means that no error signal is generated” (ibid, p. 875). This only follows under the assumption that the 
mechanisms underlying parsing ignore uncertainty about the lexical input (noise-free input; e.g., in certain 
discrete non-cascading models), and proceed radically incremental by integrating new input into globally-
coherent parses (for relevant discussion, see Bicknell et al., 2010; Kukona, Cho, Magnuson, & Tabor, 2014; 
Levy, 2011; Tabor & Tanenhaus, 1999). We do not make these assumptions. Expectation adaptation is thus 
also predicted to occur after unambiguous structures, though not necessarily to the same extent. 
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surprisal: for 𝜏𝜏 = 100 our model predicts that the observation of a single RC will increase the 
surprisal of the next MV by only .014 bits from .58 bits to .59 bits, a change of only 2.4% (if an 
MV, instead of an RC, is observed the predicted decrease in MV surprisal is even smaller, .004 bits 
or 0.7%).  

Figure 10 relates these differences in predicted surprisal effects to predicted effects on RTs. 
Specifically, Figure 10 shows the predicted effects of expectation adaptation on RTs in the RC-first 
group of HS18 (estimates for F13 are nearly identical). The estimated effects are based on the word 
length and trial position-corrected log-RTs, back-transformed into RTs. This means that any effect 
that is ambiguous between task adaptation and the adaptation of linguistic expectations is attributed 
to task adaptation. The estimates of the surprisal effects shown in Figure 10 are thus likely 
conservative. Even under such a conservative estimation, we see that surprisal effects on RCs on 
per-word RTs decrease by about 55ms (83%) over exposure to the first 80 trials (incl. 52 RCs). In 
contrast, the effects of surprisal on MVs between trials 92-142 barely decrease by 4ms (19%). 

 
*** Figure 10 APPROXIMATELY HERE *** 

 

 
Figure 10 Predicted effects of surprisal on average per-word RTs in the disambiguation region of 
ambiguous RC. The estimates of the surprisal effects were obtained after removing effects of task adaptation 
(non-linear effects of trial position) and word length, as well as individual differences between subjects and 
items. 

That is, with the same single value for the its only parameter, the belief-updating model predicts 
both fast changes in the RTs of RCs and slow changes in the RTs of MVs. An important 
consequence of this is that it is more difficult—at least if reading times are used as dependent 
measure—to detect changes in expectations for the a priori more expected structure (Prediction 1), 
compared to changes in expectations for the a priori less expected structure (Prediction 2; 
Appendix A.2 visualizes the consequences of this asymmetry for the type of block-level analysis 
conducted by Harrington Stack and colleagues; Appendix C.2 gives additional reasons why this 
holds in particular for the RC/MV ambiguity). 
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To illustrate this, we repeated the trial-level analysis reported above on only Block 3 which 
contains only MVs.  Specifically, we analyzed the effect of adapted surprisal (centered within 
Block 3) and its interaction with ambiguity (again sum-coded: 1 = ambiguous, -1 = unambiguous) 
for only Block 3. We again conducted separate analyses for both standard word length-corrected 
RTs and log-RTs corrected for trial position and word length, and did so for both F13 and HS18. 
The interaction between ambiguity and MV surprisal did not reach significance in any of the 
analyses on Block 3 (there was a marginal effect in the predicted directed for F13, but only over 
standard word length-corrected RTs, p < .08). The main effect of MV surprisal was significant, but 
only for standard word length-corrected RTs (ps < .0002), which can be confounded by task 
adaptation. As is expected, the confidence intervals of this analysis are very wide (cf. Figure 6): 
the analysis is based on less than one third of the items as the full trial-level analysis presented 
above. For the trial position and word length-corrected log-RTs, the confidence intervals of both 
the surprisal effect and its interaction with ambiguity include the (significant) effect sizes found in 
the trial analyses that included all blocks (cf. Figure 6).  

 
*** Figure 11 APPROXIMATELY HERE *** 

 

 
Figure 11  Coefficient estimates and confidence intervals for our re-analyses of Block 3 in 
Fine et al. (2013) and Harrington Stack et al. (2018), correcting for differences in the designs of the two 
experiments. Both the results for trial position and word length-corrected log-RTs (left panel) and the results 
for standard word length-corrected RTs (right panel) are shown (𝜏𝜏 = 100).  

In short, even if considered in isolation, the MV reading times from Block 3 are compatible 
with the hypothesis of expectation adaptation. We are not aware of any reason why surprisal—
which has been found to be a good predictor of per-word reading times across lexically and 
structurally heterogenous materials (Boston et al., 2008; Demberg & Keller, 2008; Linzen & Jaeger, 
2015; Smith & Levy, 2013)—would affect RTs in MVs and RCs differently. Given the strong 
support for expectation adaptation from the RC data over Blocks 1 and 2, and given that the small 
effects on Block 3 are predicted by the same model under the same parameterization, it thus seems 
parsimonious to conclude that the reading of MVs is affects by expectation adaptation in the same 
way as the reading of RCs. At the same time, the trial-level analysis of surprisal effects in Block 3 
confirms an important contribution of Harrington Stack and colleagues: it does indeed seem that 
the marginal effect in the block-level analysis in F13 not reliable (though we note that we predict 
the effect to be larger in F13, compared to HS18, see Appendix A.2). We thus close by briefly 
illustrating how future work could test Prediction 1 more effectively. 
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Consider a simple exposure-test design that maximizes the power to test Prediction 1. One 
group of participants is exposed only to RCs and the other group only to MVs (optionally with 
identical intervening fillers for both groups). Following exposure, both groups are tested on a block 
of MVs. As in the design of F13’s and HS18’s Experiment 2, we assume that ambiguity is counter-
balanced across participants within each group. Figure 12 shows the predicted between-group 
difference in the average MV surprisal during the text block—a measure of the predicted effect 
size. Additionally, Figure 12 uses transparency to indicate an approximation of power for a block-
level analysis based on the number of items in the test block. While Figure 12 is not intended to 
substitute a full power simulation, it suggests that at least 64 RCs/MVs would be required during 
exposure to achieve 1 bit of surprisal difference during test. The code and data for our models are 
shared via OSF at https://osf.io/4vxyp/, so that other researchers can conduct their own simulations 
(Appendix C discusses additional design considerations for future studies). 

 
 

*** Figure 12 APPROXIMATELY HERE *** 
 

 
Figure 12 Predicted difference in average MV surprisal during a test block with y MVs after exposure 
to either only x RCs or only x MVs (interspersed with fillers). As a rough estimate of statistical power, 
opaqueness scales proportional to the square root of the number of test trials. As a point of reference, we 
indicate the predicted surprisal difference between participant groups in Block 3 (i.e., Prediction 1) for both 
Fine et al. (2013, circle) and Harrington Stack et al. (2018, triangle). The vertical position of those points 
reflects the number of informative (MV) test trials). The horizontal position reflects the predicted effect (see 
also Appendix A.2) prior to taking into account further properties of Harrington Stack et al.’s experiment 
that we predict to reduce power (Appendices B.2 and C.2). 

Conclusion 
Harrington Stack, James, and Watson provide an interesting new data point to the study of 

expectation adaptation during sentence processing. Contrary to their conclusion that their results 
constitute a failure to replicate Fine et al. (2013), we find that the results of Harrington Stack and 
colleagues are exceedingly likely to constitute a replication of Fine et al. (2013). In fact, the effects 
of expectation-based processing and expectation adaptation observed in the two studies are 
remarkably similar. Both the original study and the replication by Harrington Stack and colleagues 
match the predictions of the hypothesis of expectation adaptation. Both studies exhibit similar 
effect sizes of adapted expectations (once differences in design between the studies are taken into 
account). The data from both studies argue for a similar strength of prior beliefs—the only free 
parameter in the model we used to fit both data—and thus the speed of expectation adaptation. 
Together with other recent studies on expectation adaptation (e.g., Farmer et al., 2014; Fine & 
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Jaeger, 2016a; Fine et al., 2010; Fraundorf & Jaeger, 2016; Kamide, 2012; Kaschak, 2006; Kaschak 
& Glenberg, 2004; Ryskin et al., 2017; Yan et al., 2018), the present findings thus suggest that 
comprehenders can adapt implicit expectations that guide the incremental integration of words into 
sentence interpretations.  

Our reply illustrates the value of computational models in guiding design and analysis. The 
belief-updating model of expectation adaptation (Bushong et al., n.d.; Fine et al., 2010) provides 
quantitative predictions for changes in expectations and surprisal given a sequence of observations. 
This allowed us to correct for differences in the design between the original experiment in Fine et 
al. (2010) and the replication in Harrington Stack et al. (2018). The same model facilitates 
predictions for possible future studies, including experiments on other structures. One specific 
consideration for future studies derived from the model is that structures with lower prior 
probability are predicted to result in larger and quicker changes in surprisal (Appendix C 
summarizes additional considerations).  

The single-parameter belief-updating model we have employed here is not intended as a full 
model of expectation adaptation. For discussion of the inferences underlying adaptation, and how 
the brain might strike a rational balance between flexible and yet stable expectations, we refer to 
Kleinschmidt and Jaeger (2015; see also Qian, Jaeger, & Aslin, 2012 and Appendix C.3). Future 
work might also compare mechanistic models that implement approximations to rational or 
rationally bounded expectation adaptation, to the type of simple normative model we have 
employed here. For example, certain exemplar-based models can be computationally equivalent to 
the type of Bayesian inference model we have presented here (Shi, Griffiths, Feldman, & Sanborn, 
2010; see also discussion in Kleinschmidt & Jaeger, 2015: 183-184). Similarly, we project that 
error-based implicit learning models predict at least qualitatively similar effects (Chang et al., 2006; 
Dell & Chang, 2013; for discussion, see also Jaeger & Snider, 2013).  

We would like to close by acknowledging how helpful we have found the willingness of 
Harrington Stack and her colleagues to share ideas, comment, and to ask/answer questions. The 
present reply elaborates and clarifies the proposal put forward in Fine et al. (2013). This would not 
have been possible without the work by Harrington Stack and colleagues. On a personal note, we 
have found the discourse surrounding this replication—in particular, with Harrington Stack, James, 
and Watson—to be intellectually rewarding, and hope that the results presented here contribute to 
further our understanding of adaptivity during language understanding. 
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Appendix A 
Expectation adaptation as Bayesian belief-updating 

Appendix A.1 presents the belief-updating model. Appendix A.2 summarizes the predictions 
of this model for block-level analyses like those conducted in the original study by Fine et al. (2013) 
and the replication by Harrington Stack et al. (2018). In the main text, we present trial-level 
analyses instead, as they make the link between the belief-updating model and predicted changes 
in surprisal more transparent. 

A.1  The belief-updating model 
The beta-binomial belief-updating model presented in Fine et al. (2010) starts from the 

assumption that comprehenders have prior expectations about the probability of two alternative 
syntactic structures, 𝑝𝑝(𝑀𝑀𝑀𝑀) = 	𝜃𝜃 and 𝑝𝑝(𝑅𝑅𝑅𝑅) = 	1 − 	𝜃𝜃. Comprehenders are taken to have some 
degree of uncertainty about θ. This uncertainty over expectations is represented by the beta 
distribution with parameters α and β (here, representing MVs and RCs). Intuitively, these 
parameters can be thought of as pseudocounts of the number of times the comprehender has 
encountered each structure. As the sum of α and β gets larger, the uncertainty about 𝑝𝑝(𝑀𝑀𝑀𝑀) and 
𝑝𝑝(𝑅𝑅𝑅𝑅)  decreases—the beta distribution gets tighter and more peaked. Examples of the beta 
distribution and changes in that distribution are shown in Panel B of Figure 4 in the main text. 

Under the assumption of a beta conjugate prior, the resulting uncertainty over 𝑝𝑝(𝑀𝑀𝑀𝑀) at each 
point in the experiment is described as a function of α and β: 

 
𝑝𝑝(𝜃𝜃) = 	𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃|𝛼𝛼, 𝛽𝛽) ∝ 	𝜃𝜃UVW(1 − 𝜃𝜃)XVW 

 
where both parameters can be understood as the sum of the prior pseudo counts for the 

respective structure (α0 and β0) and the number of observations of that structure within the 
experiment so far. For example, for a comprehender who has encountered 3 MVs and 10 RCs so 
far, the posterior beliefs about	𝜃𝜃 are:  

 
𝑝𝑝(𝜃𝜃|RC) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜃𝜃|𝛼𝛼 + 3, 𝛽𝛽 + 10) ∝ 	𝜃𝜃U[3(1 − 𝜃𝜃)X[\ 

 
In short, each time a comprehender encounters a structure, they update that structure’s 

pseudocount. This posterior then becomes the prior for the next trial a comprehender encounters a 
relevant structure. 

To approximate beliefs about all other structures that can occur in the same ambiguous 
environments as MVs and RCs, we modify the beta distribution by introducing a third parameter 
γ. Since comprehenders never encounter critical sentences in any structure other than RC and MV, 
this parameter never changes throughout the course of the experiment. We obtain expectations 
for	𝑝𝑝(𝑀𝑀𝑀𝑀) and 𝑝𝑝(𝑅𝑅𝑅𝑅) by marginalizing over the beta distribution, giving us: 

 
𝑝𝑝(𝑀𝑀𝑀𝑀) = 𝛼𝛼

𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾^ , and 𝑝𝑝(𝑅𝑅𝑅𝑅) = 𝛽𝛽
𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾^  

 
To further reduce the degrees of freedom of this model, we hold the relative proportion of α`, 

β`, and	𝛾𝛾` constant at 0.008, 0.67, and 0.322, respectively (based on the relative frequency of MV 
and RC continuations in the ambiguous context in large databases of English, Roland et al., 2007). 
This allows us to have only a single degree of freedom, τ = α` + β` + 𝛾𝛾`.  

A.2  Block-level predictions that correct for the differences in design 
We can use the belief-updating model to calculate the average RC and MV surprisal for the 

three blocks of F13’s and HS18’s designs by aggregating over trial-level predictions (those shown 
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in Figure 2). From this, we then calculate the predicted differences in surprisal relevant to 
Predictions 1-3 for each of the two designs.  

Panel A of Figure 13 shows the predicted mean surprisal for all three blocks of both the original 
F13, and the revised HS18, design. Consider, for example, the number of RCs in Block 1 for the 
RC-first group in Figure 2. In the revised design of HS18, there are now 16 more RCs in this block 
with increasingly smaller surprisal. As a consequence, the mean surprisal across all RCs in Block 
1 of this revised design will be substantially smaller (3.21 bits for 𝜏𝜏 = 100) than in the original 
experiment (4.84 bits). This in turn means that, for example, the predicted reduction in surprisal 
from Block 1 to Block 2 of the RC-first group differs between the original (predicted: 2.32 bits 
reduction in RC surprisal for 𝜏𝜏 = 100) and the revised design (predicted: 1.42 bits reduction). Panel 
B of Figure 13 shows the predicted difference in surprisal relevant to the block-level assessment of 
Predictions 1-3. These are the differences that the block-level analyses in HS18 are aiming to 
replicate.  

The predicted differences in Panel B always point in the same direction. They do so for all 
values of 𝜏𝜏, and for both the original and the revised design. However, the size of the predicted 
difference in surprisal differs between the designs. For Predictions 1 and 3, which are both 
predictions about differences between groups, we find only small differences between the two 
design. With regard to Prediction 1, the revised design results in a minimally larger surprisal 
differences between groups than the original design, regardless of 𝜏𝜏. With regard to Prediction 3, 
the original design results in minimally larger differences between groups for small 𝜏𝜏s, whereas the 
revised design results in minimally larger differences for large 𝜏𝜏s. For 𝜏𝜏 = 100, the two designs do 
not differ much. For Prediction 2, which pertains to the difference in RC surprisal between Blocks 
1 and 2, the original design in F13 is predicted to result in substantially larger surprisal differences, 
except for very large 𝜏𝜏s. Finally, Figure 13 shows that the predicted differences in surprisal tend to 
be larger for RCs than MVs, which should make it easier to detect changes in the magnitude of 
garden path effects for RCs (Predictions 2 and 3), compared to changes for MVs (Prediction 1). 

 
*** Figure 13 APPROXIMATELY HERE *** 
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Figure 13  Predicted effects depending on the strength of prior beliefs (𝜏𝜏). In all panels we 
highlight 𝜏𝜏 = 100, the value we committed to a priori in order to reduce researchers’ degrees of freedom. 
Panel A: Predicted mean surprisal of RCs and MVs in Block 1-3 for both the original Experiment 2 in Fine 
et al. (2013) and Experiment 2 in Harrington Stack et al. (2018). Panel B: Predicted differences in the 
surprisal of the relevant structure for the three block-level analyses that assess Predictions 1-3, respectively.  

We emphasize that the predicted effects in Panel B of Figure 13 are not to be equated with the 
statistical power to detect these effects. The statistical power also depends on the by-subject, by-
item, and residual variance of RTs, and these variances differed substantially between both blocks 
and experiment (F13 vs. HS18). Specifically, the RTs in HS18 exhibited consistently larger 
variability (see Appendix B.2). For example, for Block 3 (relevant to Prediction 1) the residual 
variance of the corrected log-RTs in HS18 was 27% larger, compared to F13. Further, additional 
differences in stimuli design can affect the expected power. One such difference that we expect to 
substantially reduce the power for Prediction 1 in HS18’s data is described in Appendix C.2. It is 
not trivial to weigh these various differences between F13 and HS18 against each other to obtain 
adequate power estimates for the two studies.  

Appendix B 
De-confounding task adaptation and the adaptation of syntactic expectation 

This appendix provides supplementary information that motivates the GAMM-based procedure 
we used to correct log-transformed RTs for linear effects of word length effect and non-linear 
effects of trial position. We begin by motivating why our main analyses focus on (corrected) log-
transformed RTs.  

B.1  Reading times in both data sets are not normally distributed 
The analyses employed by both F13 and HS18 assume that RTs are normally distributed. This 

simplifying assumption is widespread in the field (but see, e.g., Fine & Jaeger, 2016a; Nicenboim, 
Logacev, Gattei, & Vasishth, 2016), as reflected in the most common approaches to the analysis of 
RT data from self-paced reading experiments (e.g., the use of ANOVA or linear mixed models with 
raw or length-corrected RTs). However, this assumption is unwarranted. To begin with, the 
assumption of normality is unlikely to hold prima facie because of the inherent ‘soft’ floor for RTs. 
Indeed, RTs form self-paced reading experiments tend to have heavily skewed distributions (Figure 
14), with strong correlations between means and standard deviations (Figure 15).  

 
*** Figure 14 APPROXIMATELY HERE *** 

 

Figure 14: Marginal density of word-by-word reading times (RTs) using all data from Fine et al. 
(2013), Experiment 2 (Panel A-C) and Harrington Stack et al. (2018), Experiment 2 (Panel D-F). Panels A 
& D: Raw RTs. Panels B & E: Raw RTs after outlier exclusion as employed by both Fine et al. (2013) and 
Harrington Stack et al. (2018): 100 <= RT <= 2000 (< .5% data loss). Panels C & F: Length-corrected 
RTs, which also correct for individual differences in reading speeds between participants. The skewness 
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parameter is calculated as 𝐸𝐸[((𝑋𝑋 − 𝜇𝜇)/𝜎𝜎)i]. All distributions are significantly skewed based on D’Agostino 
test (D’Agostino, 1970).     

*** Figure 15 APPROXIMATELY HERE *** 

 
Figure 15: Correlation between means and standard deviations (SD) of outlier- and length-corrected 
word-by-word reading times (RTs, cf. the rightmost column in Figure 14). Panel A: Six randomly drawn 
participants from Harrington Stack et al. (2018), Experiment 2. RTs were binned into 20 quantiles with 
equally many data points each. Panel B: Correlation across participants in Fine et al. (2013), Experiment 
2. Each data point represents one sentence (trial). Shape and color show the sentence structure. Panel C: 
Same as Panel B but for Harrington Stack et al. (2018), Experiment 2.  Both for Panel B and C, RT means 
are a highly significant linear predictor of log-transformed SDs (p<.0001), and this relation is significantly 
stronger for Panel C, compared to Panel B (p<.001). Additionally, SDs were overall higher in Panel C 
(p<.0001), reducing the statistical power of the Harrington Stack et al.’s experiment. 

If the self-paced RTs were to follow a normal distribution, the correlation between means and 
standard deviations should be zero (the mean and SD of a normal distribution are independent). 
Cleary, this is not the case. The RTs in F13 and HS18 (and other self-paced reading experiments 
we have examined) strongly violate the assumption of the homogeneity of variance. Rather, the 
mean and standard deviation of RTs exhibit strong correlations, as would be expected from, for 
example, log-normal or exponential Gaussian distributions (Wagenmakers & Brown, 2007).8 It is 
largely an open question how much the assumption of normality and the resulting violation of the 
assumption of the homogeneity of variance affects analyses of reading times. Systematic 
evaluations of different types of models of RT distributions are to the best of our knowledge still 
lacking (unlike for simpler reaction time tasks, Kliegl, Masson, & Richter, 2010; Rouder, 2005; 
Rouder, Lu, Speckman, Sun, & Jiang, 2005; Wagenmakers & Brown, 2007). In an ongoing large 
simulation project, we have found that log-normal analyses of self-paced reading data tend to have 
higher power and lower Type I error rates, than analyses based on the assumption of normality 
(Burchill, Bushong, & Jaeger, 2018) (see also Baayen & Milin, 2010; Nicenboim et al., 2016). This 

                                                   
8 We note, however, that the quadratic relation sometimes observed between RT means and standard 

deviations is not expected under log-normal distributions. This might distinguish reading times from reaction 
times in simpler tasks (see references in text). 
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also was confirmed for both the F13 and HS18 data (not shown here). This motivates our choice to 
correct log-RTs, rather than untransformed RTs.9 

B.2 Task adaptation: consequences of doubling the number of trials per block 
Moving-window self-paced reading experiments like those employed by F13 and HS18 are 

subject to strong task adaptation effects. Unlike in everyday reading, participants only see one word 
at a time. The other words of a sentence are masked by dashes. Reading advances button press by 
button press. As participants get used to this unfamiliar task, reading times change drastically over 
the initial trials of an experiment. Figure 16 shows a decrease of almost 150ms per word from 450 
to 300ms over the course of an experiment in HS18. Similar effects of task adaptation have been 
observed previously, and are the reason why previous analyses from our lab either statistically 
controlled for trial position (Craycraft, 2014; Fine & Jaeger, 2016a) or held it constant for critical 
comparisons (Fine et al., 2013; Fraundorf & Jaeger, 2016). 

As can be seen in Figure 16, the difference in the number of sentence stimuli in HS18’s vs. 
F13’s design means that the two experiments are affected differently by task adaptation. And this 
in turn means that it is problematic to compare block-level results across the two experiments (this 
includes the type of argument Harrington Stack and colleagues present based on differences in 
block-level significance between the two experiments). This motivates the use of a GAMM-based 
residualization approach to correct (log-transformed) RTs for effects of word length and effects of 
trial position. GAMMs rather than linear mixed models were used to fully account for the effect of 
trial position, which is clearly non-linear (see also Figure 16).10 We also fitted a more complex 
model in which both trial position and word length were allowed to have non-linear effects. 
However, both for the F13 and the HS18 data, word length effects were clearly linear. We thus 
decided to employ corrected (log) RTs from the simpler GAMM, in which only trial position was 
allowed to have non-linear effects. 

 
*** Figure 16 APPROXIMATELY HERE *** 

 

                                                   
9 We note that the variance of RTs was significantly larger in HS18’s data. This is visible in Figure 15, 

and was confirmed in all mixed-effects analyses (e.g., the estimated residual variance of standard word 
length-corrected RTs was between 12-27% larger in SETA, compared to F13). This means that HS18’s 
statistical power is likely significantly lower than their power analyses suggest, though likely still larger than 
F13’s (because of the much larger number of participants). 

10 We note that task adaptation did not confound the original analyses of Predictions 1 and 3 in F13: 
within each experiment, adaptation to the task of self-paced reading cannot confound analyses for these 
predictions, as trial position is held constant for those comparisons. Within each experiment, only analyses 
of Prediction 2 were potentially confounded (as acknowledged in both Fine et al., 2013 and Harrington Stack 
et al., 2018). However, for comparisons across experiments (including comparisons of significance patterns), 
this is no longer the case because of the doubling of trials per block in the new design in HS18.  
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Figure 16: The standard deviation (SD) of length-corrected reading times (RTs) decreases as a 
function of trial order throughout the experiment, violating the assumption of homogenously distributed 
residuals if RTs are analyzed with standard Gaussian link functions. Panel A: Fine et al. (2013), Experiment 
2. Panel B: Harrington Stack et al. (2018), Experiment 2. Data were obtained in the same way as in Figure 
15. Block structure (Block 1-3) is indicated through dashed vertical lines. 

B.3 Residualization models used to correct RTs 
All models for RT correction were fit to only data from fillers, so as to avoid overfitting to the 

critical trials. Models were fit separately to the data from F13 and HS18 (the resulting fits were 
very similar). For the GAMM-corrected log-RTs, we regressed log(RT) ~ 1 + WordLength + 
s(TrialPosition) + s(Subject, bs = "re") +  s(Subject, TrialPosition, bs = "re") + s(Subject, 
WordLength, bs = "re"), where WordLength and TrialPosition were first centered. For standard 
word length-corrected RTs, we regressed RT ~ 1 + WordLength + (1 + WordLength | Subject).  

Corrected RTs for the disambiguation region of the critical items (RCs and MVs) were obtained 
by subtracting the RT predicted based on the respective correction model from the actual RT. Prior 
to analysis, we obtained average corrected per-word RTs for the disambiguation region for each 
unique combination of subject and item, so as to avoid Type I error inflation due to auto-
correlations between the RTs of the three words in the disambiguation region. This was the case 
both for the analyses of Predictions 1-3 (for the Bayesian replication test under the assumption of 
identical predictions for F13 and HS18) and for the replication tests analyses that corrected for the 
differences in design between F13 and HS18. 

 Appendix C 
Differences between the original and replication study and considerations for future studies 

Table 1 provides a summary of differences between F13’s and HS18’s Experiment 2. that might 
be relevant to their interpretation. HS18 is intended as a close and high-powered replication of 
F13’s Experiment 2. As summarized in the main text, some differences between the two studies 
are predicted to result in different results. Several other changes made to the design in HS18 are 
likely to work against the goal to maximize statistical power. We list these differences so that future 
work can take them into consideration.  

We discuss two of these differences in some detail, because we consider them particularly 
relevant for future work. The first difference relates to differences in the structure of fillers 
(Appendix C.1). The second difference relates to differences in the way that MVs were 
disambiguated (Appendix C.2). Both differences are predicted to reduce—potentially by a 
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substantial amount—the power of HS18’s Experiment 2 to detect the effects of Prediction 1. 
Finally, we discuss additional factors that are predicted to influence the degree of expectation 
adaptation in an experiment (Appendix C.3). 

 
*** Table 1 APPROXIMATELY HERE *** 

 
Change from F13 to 
HS18 

Consequence Expected to affect 

Changes that are unambiguously improvements 
Doubled # of 
participants 

• Increases number of observations that 
go into group-level RT estimates 

• Increases power for effects 
of exposure group, i.e., in 
particular for Predictions 1 
and 3. 

Changes that change predicted effects 
Doubled # of RCs in 
Block 1 

• Changes predicted differences in 
surprisal between exposure group 

• Changes predictions and 
predicted effect sizes for 
Predictions 1, 2, & 3  

Doubled # of RCs in 
Block 2 

• Changes predicted differences in 
surprisal between exposure group 

• Changes predictions and 
predicted effect sizes for 
Predictions 1, 2, & 3 

Doubled # of MVs in 
Block 3 

• Changes predicted differences in 
surprisal between exposure group 

• Changes predictions and 
predicted effect sizes for 
Prediction 1 

Doubled # of critical 
items  

• Increases number of observations that 
go into each block-level RT estimate 

• Design predicts largest effects at 
beginning of each block. Longer 
blocks reduce predicted between-
group differences in block-level 
averages. 

• Changes power for block-
level analyses (everything 
else being equal) 

Doubled # of stimuli 
per block 

• Changes how much, in particular, 
Block 1 and 2 are affected by task 
adaptation 

• Changes mean RTs per block (and 
relative differences in SD of residuals 
across blocks)  

• Changes power (and 
possibly Type I error) of 
standard analyses like 
those employed in both 
papers for all predictions 

 • Might increase proportion of 
attentional blinks or disengagement 
with task towards end of experiment 

• Decreases power, in 
particular, for Prediction 1 

Changes likely to affect ability to detect effect 
Differences in the 
ambiguous verb 
forms used in critical 
stimuli 

• Changes the predicted magnitude of 
the a priori ambiguity effect 

• Changes power for all 
predictions. E.g., 
reduction in ambiguity 
effect (Prediction 2) is 
only detectable for large a 
priori ambiguity effects 

Differences in the 
disambiguation 
region used in 
critical stimuli 

• Clarity of disambiguation signal 
seems to affect effect sizes (Craycraft, 
2014 vs. Fine et al., 2013). 

• Changes power for all 
predictions  
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 • ‘Disambiguation’ towards MV 
requires particular care. 

• Changes power for 
Prediction 1 

Different # of words 
following the 
disambiguation 
point 

• Reduces disambiguation signal for 
MVs (the only signal is the distance to 
the end of the sentence). 

• Decreases power for 
Prediction 1. 

Changes reducing comparability, but unlikely to affect the results 
Experiment 
conducted over 
MTurk rather than in 
the lab 

• Increased noise in RT measures 
(empirically confirmed, cf. Appendix 
B.2). We also found that the by-
subject, by-item, and residual 
variances was often about 10-40% 
larger in HS18 compared to F13 
(depending on the specific analysis). 

• Decreases power, but 
likely not much, and large 
number of subjects should 
more than make up for it. 

 • More heterogeneous subject 
population. 

• Might increase 
generalizability of result 

 
Other differences in 
the lexicalization of 
stimuli 

  

Repetition of 
ambiguous verbs 
within Block 1 

• Could theoretically affect verb-
specific adaptation, but Fine and 
Jaeger (2016) found no evidence for 
verb-specific adaptation. 

 

Repetition of 
ambiguous verbs 
within Block 2 

• Could theoretically affect verb-
specific adaptation, but Fine and 
Jaeger (2016) found no evidence for 
verb-specific adaptation. 

 

Repetition of 
ambiguous verbs 
between Block 2 
(RCs) and 3 (MVs) 

• Could theoretically affect verb-
specific adaptation. Fine and Jaeger 
(2016) did not investigate 
consequences of observing same verb 
with different structures.  

• If anything, this should 
arguably increase the 
effect for Prediction 3 

Table 1 Summary of differences between the original Experiment 2 in Fine et al. (2013) and Experiment 2 
in Harrington Stack et al. (2018) intended as a replication of the original experiment.  

C.1 Syntactic structure of fillers is predicted to affect expectation adaptation 
Recall the wording of Prediction 3 that changes in the expectations for a structure “…should only 
depend on observations that speak to the relative frequency of [that structure] in the relevant 
contexts”. In other words, any and all observations that comprehenders take to be informative about 
the probability of a structure in the current input are assumed to affect the expectations for that 
structure. One consequence of this is that it matters whether fillers contain environments in which 
the structures of interest (here: RCs or MVs) could occur. If a comprehender observes a syntactic 
environment in which the structures of interest could have occurred (here: an ambiguous verb form 
like warned that could be interpreted as either passive participle or simple past tense form), but the 
structure of interest was not observed, this means that a competing structure has been observed 
(here: other structures that could occur after ambiguous verb forms like “warned”; indicated with 
green lines in Figure 4, Panel B-C in the main text). Both HS18 and F13 avoided reusing in fillers 
any of the ambiguous verbs that occurred in critical items. Both HS18 and F13 also avoided fillers 
with the RC/MV ambiguity. However, F13 went one step further: “fillers never contained […] verb 
forms that (in their syntactic context) were ambiguous between a past tense and past participle 
interpretation” (Fine et al., 2013, p. 5). HS18 did not explicitly implement this constraint (Duane 
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Watson, p.c.). Future experiments should keep in mind that the inclusion of such instances—even 
in fillers—is predicted to affect participants’ expectations, and thus the surprisal they will 
experience. For example, for the design of Experiment 2 in F13 and HS18, our model predicts that 
fillers of this type reduce the effect size for Prediction 1. 

Prediction 3 also has a second, less immediately obvious, consequence. If comprehenders have 
implicit knowledge of statistical dependencies between the occurrence probabilities of different 
types of structures, the observation of one structure would allow comprehenders to adapt their 
beliefs about the probability of all structures whose occurrence this structure is informative about. 
An example from adaptation during speech perception serves to illustrate this point. The primary 
phonetic cue to voicing contrasts between syllable-initial plosives in English (/b/-/p/, /d/-/t/, /g/-/k/)  
covary across talkers (Chodroff & Wilson, 2017, 2018). And, critically, recent perception 
experiments suggest that listeners have implicit knowledge of this covariation, and take it into 
account during the recognition of speech categories: when listeners are exposed to an unfamiliar 
talkers pronunciations of /b/-/p/ and /g/-/k/, they can readily extrapolate to how that talker will 
pronounce /d/-/t/ (Chodroff, Golden, & Wilson, 2016). 

We are not aware of similarly systematic experiments on, for example, the covariation of 
syntactic subcategorization preferences across talkers. There is, however, evidence that suggests 
that such covariation exists. For example, Finegan and Biber (2001) investigate a variety of 
reduction phenomena across different genres, registers, and topics. Finegan and Biber find a 
considerable amount of covariation between these phenomena across the different types of texts 
they investigate. Results like this suggest that the objective statistics of different syntactic structures 
can covary. They leave open whether comprehenders have implicit knowledge of this syntactic 
covariation, and whether they draw on this knowledge during language understanding (as they seem 
to do for phonetic covariation). For experiments on syntactic adaptation, this means experimenters 
should choose their fillers carefully—either minimizing their informativity about the target 
structures, or computationally modeling the potentially confounding effect of that informativity. 

C.2 The importance of a clear disambiguation signal 
The second consideration pertains to the strength of disambiguation signal, and the lexical material 
employed both in the ambiguous region and the disambiguation region. Expectation adaptation 
predicts changes in the size of ambiguity effects. Thus, predicted reductions in the ambiguity effect, 
for example, should be easier to detect for a priori larger ambiguity effects. One variable known to 
affect the size of the ambiguity effect is the subcategorization bias of the ambiguous verb form 
(Hare et al., 2007). Specifically, critical items with ambiguous verb forms that are strongly biased 
against the structure of interest should make it easier to detect expectation adaptation. Another 
mediator of the expected effect size is the clarity of the disambiguation signal. The less uncertainty 
about the correct syntactic parse comprehenders are left with after reading the first word of the 
disambiguation region, the easier it should be to detect a clear ambiguity effect.  

In this context, we note an important asymmetry between the feasibility of testing changes in 
the size of ambiguity effects for MVs (Prediction 1) and RCs (Prediction 2): it more straightforward 
to obtain a clear disambiguation signal for RCs, than for MVs. And, as it turns out, this problem 
was exacerbated in HS18, compared to F13. As this might have contributed to HS18’s failure to 
replicate Prediction 1, we elaborate. 

Specifically, RC continuations as in (1b) provide comprehenders with a strong disambiguation 
signal—an observation of “conducted” following “The experienced soldiers warned about the 
dangers …” essentially requires readers to give up on the hypothesis that “warned” is the matrix 
verb (unless one considers “conducted” a typo or grammatical mistake). This is, of course, the very 
reason why sentences like (1b) enjoyed a stellar career as garden-path sentences. Critically, MV 
continuations as in (1a) do not provide an equally strong disambiguation signal. That is, even if we 
imagine a comprehender who strongly expects to be in an RC parse (e.g., because of having been 
exposed to many RCs and no MVs), the disambiguation region in (1a)—intended to indicate an 
MV parse—is actually perfectly compatible with a continued RC interpretation: “before the 
midnight raid” can be a modifier to the noun phrase “the dangers” or the verb phrase “warned about 
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the dangers” even under the RC parse.11 This property of MV ‘disambiguation’ makes it much 
harder to detect ambiguity effects for MVs, compared to RCs. And this, in turn, makes it difficult 
to reliably test Prediction 1, which are about changes in the size of ambiguity effect. In fact, the 
only unambiguous disambiguation signal is provided by the period at the end of the sentence (and 
thus outside the three-word disambiguation region typically employed in studies on the RC/MV 
ambiguity). This problem is not limited to sentence (1). All stimuli of previous studies on the 
RC/MV ambiguity that we reviewed have this property (which was not critical to the goals of 
studies on the existence of garden paths but matters when we test predictions about changes in 
garden path effects). Indeed, it seems to be difficult, if not impossible, to create stimuli that avoid 
this asymmetry for the RC/MV ambiguity (but see Craycraft, 2014, for improvements over the 
stimuli used in earlier studies). 

It is primarily due to a combination of a specific property of the self-paced reading paradigm 
employed by F13 as well as a specific property of their stimuli that any signal for Prediction 1 is 
expected at all during the three-word disambiguation region. The moving-window word-by-word 
self-paced reading F13 employed masked all words both before and after they were shown. As is 
common for this paradigm, words were masked with “-“ and spaces between the words were visible 
to readers. This means that participants know how many words are yet to be revealed before the 
sentence ends. And, critically, the RC and MV stimuli in F13’s experiment all had exactly four 
words remaining in the sentence starting at the first word of the disambiguation region (as in (1): 
“… conducted/before the midnight raid”). Since a hypothetical strongly RC-biased comprehender 
who expects the sentence onset “The experienced soldiers warned about the dangers …” to have 
an RC parse still requires a matrix verb for a well-formed sentence, this means that each of the 
remaining four words further increases the probability that the sequences of words seen so far must 
be interpreted as an MV. This is similar to the case of spoken language understanding, where 
prosodic information can be used to anticipate clause or sentence boundaries. The fact that F13 
analyzed the first three of these four words (following earlier garden-path experiments on the 
RC/MV ambiguity MacDonald et al., 1994) is thus likely to have given them about as much 
statistical power as possible in detecting an ambiguity effect.12 

 HS18 employ the same word-by-word moving window masked procedure. Their stimuli, 
however, did not share the second property of F13’s experiment: across ambiguous MV stimuli, 
between 3-8 words followed the region intended to be ambiguous (mean = 4.9, SD = 1.48; cf. mean 
= 4, SD = 0 for F13).  Seven (37%) of the 19 MVs in HS18 (1 was removed by HS18 for other 
reasons) had more than 4 words following the ambiguous region. Additionally, one (5%) of the 
ambiguous MVs had only 3 words following the ambiguous region, which meant that the large 
sentence-final reading time increases were part of the disambiguation region. In short, 8 out of the 
10 additional MVs designed by HS18 had properties that made it hard or impossible to detect an 
ambiguity effect on them. 13  The true statistical power of HS18’s experiment with regard to 
Prediction 1 is thus likely to be substantially lower than suggested by their power analysis. Perhaps 
most important is that design changes like this can actually reduce the predicted effect size even 
compared to the original experiment with half as many items. Consider, for the sake of this 

                                                   
11 This becomes apparent if we consider an unambiguous RC version of the sentence in (1a): “The 

experienced soldiers who were warned about the dangers before the midnight raid …”. This sentence can be 
completed while leaving the RC interpretation intact (“… conducted another raid.”). 

12 We note that inclusion of the fourth and final word is not necessarily expected to further increase the 
statistical power to detect an effect: self-paced reading exhibits very large increases in reading times at the 
end of sentences (Kuperman et al., 2010), as also evidenced in F13’s experiments (Fine et al., 2013, Figure 
4). Self-paced reading experiments tend to be intentionally designed such that critical regions do not involve 
the last word, as was also the case for Fine et al. (2013). 

13 Additionally, we found that words constituting the three-word disambiguation region differed within-
item for at least three (35%) of the 10 new MV items in HS18 (Item 158, 160, 164). The final region differed 
in these items, and in one additional item (Item 171). In all cases, each of the two different versions of each 
item were seen by approximately equally many participants. We communicated these problems to HS18 and 
the revised data and scripts on their OSF site now exclude these items. 
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argument, that the 8 problematic MVs had no detectable ambiguity effect, and the remaining 12 
MVs had the predicted ambiguity effect, and thus a predicted between-group difference in the 
predicted surprisal of .326 bits (left-most panel in Figure 13-B). This would leave 40% fewer items 
to detect the predicted between-group difference in MV surprisal.  

In short, several properties of the RC/MV ambiguity might limit researchers’ ability to detect 
expectation adaptation on MVs (see also Figure 12 in the main text). Future studies on expectation 
adaptation might consider alternative garden path structures with clearer disambiguation points. 

C. 3 Additional factors that are predicted to affect the speed of expectation adaptation 
We briefly illustrate two aspects that might affect the degree to which expectation adaptation 

is observed in an experiment, that are not captured by the simple belief-updating model we have 
employed here. 

The first point concerns the interpretation of 𝜏𝜏. Above we have sometimes referred to 𝜏𝜏 as the 
strength of prior beliefs. This follows the most common nomenclature for this type of parameter 
but is potentially confusing. Rather, we propose that 𝜏𝜏 captures how relevant comprehenders take 
previous experience to be to the current environment. This perspective highlights that the relevance 
of prior expectations to expectations for the present environment—or even the relevance of some 
prior expectations based on specific previous experience that is considered similar to the present 
environment—itself needs to be inferred. For example, if comprehenders are capable of learning 
environment-specific expectations and remembering them, a full model of expectation adaptation 
might require inferences about relevant similar experiences. 

Additionally, adaptation to a new unfamiliar environment (such as an experiment) might be 
faster in the presence of additional cues that prior expectations might not transfer to this 
environment (cf. wonky world experiments or artificial language learning). Conversely, the more 
likely the current environment is to be inferred to follow prior expectations, the more expectation 
adaptation should be constrained by those prior expectations. Indeed, there is abundant evidence 
that some expectations are very hard or impossible to overcome even with prolonged exposure 
(e.g., second language acquisition in adults, as recently reviewed in Pajak, Fine, Kleinschmidt, & 
Jaeger, 2016). While limitations of this type are often attributed to cognitive limitations, it is worth 
pointing out that it can be rational to not adapt to quickly—avoiding reduced efficiency due to 
volatile expectations that mismatch the statistics of the input. Rational adaptation should itself rely 
on prior knowledge about the volatility of the relevant statistics and the factors that predict changes 
in those statistics (for relevant discussion, see Kleinschmidt & Jaeger, 2015; Qian, Jaeger, & Aslin, 
2012; Yu and Cohen, 2008).  

Future comparisons of best-fitting 𝜏𝜏s across different types syntactic structures should thus take 
into account that expectation adaptation might be more rapid for statistics for which 
comprehenders’ previous experience suggests that they vary across linguistic environments (REF). 
For example, if the frequency of passive structures varies strongly between environments but the 
frequency of different ditransitive structures does not, adaptation to changes in passive frequency 
should be faster.  
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